Accepted Manuscript

Interseismic crustal deformation in the Taiwan plate boundary zone revealed by GPS observations, seismicity, and earthquake focal mechanisms

Ya-Ju Hsu, Shui-Beih Yu, Mark Simons, Long-Chen Kuo, Horng-Yue Chen

 PII:
 S0040-1951(08)00577-5

 DOI:
 doi: 10.1016/j.tecto.2008.11.016

 Reference:
 TECTO 124415

To appear in: Tectonophysics

Received date:29 May 2008Revised date:11 November 2008Accepted date:18 November 2008

Please cite this article as: Hsu, Ya-Ju, Yu, Shui-Beih, Simons, Mark, Kuo, Long-Chen, Chen, Horng-Yue, Interseismic crustal deformation in the Taiwan plate boundary zone revealed by GPS observations, seismicity, and earthquake focal mechanisms, *Tectonophysics* (2008), doi: 10.1016/j.tecto.2008.11.016

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1 Interseismic crustal deformation in the Taiwan plate boundary zone revealed by

2 GPS observations, seismicity, and earthquake focal mechanisms

- 3 Ya-Ju Hsu¹, Shui-Beih Yu¹, Mark Simons², Long-Chen Kuo¹, and Horng-Yue Chen¹
- 4 1. Institute of Earth Sciences, Academia Sinica, P.O. Box 1-55, Nankang, Taipei, Taiwan

5 Tel: 886-2-27839910 ext.415 / Fax: 886-2-27883493/

- 6 e-mail: <u>yaru@earth.sinica.edu.tw</u>
- 7 2. Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA
- 8 91125, USA.

K Chine and a second se

9 Abstract

10 We use GPS-derived surface velocities, seismicity, as well as estimates of earthquake focal 11 mechanisms from the time period before the 1999 Chi-Chi earthquake to evaluate spatial variations of surface strain rate and crustal stress regime in the Taiwan plate boundary zone. We estimate strain rates 12 with a new but simple approach that solves for surface velocity on a rectangular grid while accounting 13 for the distance between observations and each grid node and the impact of a spatially variable density 14 15 of observations. This approach provides stable and interpretable strain-rate estimates. In addition, we 16 perform a stress tensor inversion using earthquake focal mechanisms determined by P waves 17 first-motion polarities. Our estimates of the principal orientations of two-dimensional surface strain rate tensor generally agree with the inferred orientations of the stress axes. This agreement suggests that a 18 19 large scale variation of stress orientations from the surface to the base of the crust is insignificant and the predicted faulting style is consistent with stress buildup during the interseismic loading. We find 20 21 that the geometric configuration of the Chinese continental margin alone can not fully explain the 22 distribution of maximum contraction and compressive axes in Taiwan. Distribution of seismicity and focal mechanisms before and after the Chi-Chi mainshock suggest that the maximum principal stress 23 axis is vertically-oriented in the Central Range; in contrast to the horizontal maximum principal stress 24 25 axis in western Taiwan and the Longitudinal Valley. Extension in the Central Range reflects the 26 consequence of exhumation and crustal thickening.

27 **1. Introduction**

28 The island of Taiwan is located in the plate boundary zone between the Eurasian (EUP) and 29 Philippine Sea plates (PHP) and is bound by two subduction zones. In the north, the PHP subducts beneath the Ryukyu Arc; while to the south, the South China Sea block of the EUP subducts beneath 30 the PHP (Fig. 1). The Taiwan orogeny results from the collision of the Luzon volcanic arc in the PHP 31 and the Chinese continental margin in the EUP beginning about 3-6 Ma ago (Suppe, 1984; Barrier and 32 Angelier, 1986; Teng, 1996; Huang et al., 1997). The plate convergence rate across the Island is about 33 8 cm/vr in a direction of N310°E (Seno et al., 1993; Yu et al., 1997). 34 35 Taiwan can be divided into six northeast-trending physiographic regions which are separated by major faults (Fig. 1). These regions are, from west to east, the Coastal Plain, the Western Foothills, the 36 37 Hsueshan Range, the Central Range, the Longitudinal Valley, and the Coastal Range. The Coastal Plain is composed of Quaternary alluvial deposits derived from the Western Foothills and the Central Range. 38 39 The Western Foothills consists of a thick sequence of shallow marine to shelf sediments from the late Oligocene, Miocene, to early Pleistocene. The Hsueshan Range is mostly composed of Eocene and 40 Oligocene sediments. The Central Range is characterized by Tertiary metamorphism, in contrast with 41 the adjacent non-metamorphic rocks in the Western Foothills. The 150 km long NNE-trending 42 43 Longitudinal Valley separates the Central Range to the west and the Coastal Range to the east. 44 Quaternary clastic fluvial sediments fill this valley. The Coastal Range is composed of Neogene 45 andesitic volcanic rocks of the northern Luzon Arc. The Longitudinal Valley Fault (LVF) runs more or

46	less along the western margin of the Coastal Range and it is a major active structure in eastern Taiwan
47	(Biq, 1972; Hsu, 1976; Wu, 1978; Barrier and Angelier, 1986; Ho, 1986).
48	An island-wide GPS network composed of more than 195 campaign-mode sites and 17 continuous
49	stations have been established by the Institute of Earth Sciences, Academia Sinica, Ministry of the
50	Interior (MOI) and other institutions since 1989. Most of the campaign-mode sites have been occupied
51	at least once annually since 1990. The first velocity field in the Taiwan area was estimated from the
52	1990-1995 GPS observations by Yu et al. (1997). The convergence across the Taiwan arc-continent
53	collision zone inferred from GPS velocity field is about 80 mm/yr in the northwest direction. The
54	crustal strain is accumulated in two major zones: the fold-and-thrust belt in the Western Foothills, and
55	the Longitudinal Valley as well as the Coastal Range in eastern Taiwan.
56	On 21 September 1999, the M_w 7.6 devastating Chi-Chi earthquake struck central Taiwan. The
57	Chi-Chi earthquake resulted from the reactivation of the Chelungpu Fault (CLPF), a major frontal
58	thrust within the Western Foothills (Fig. 2). Most of the GPS sites were affected by this large event and
59	showed significant coseismic movements.
60	For studying the interseismic deformation before the 1999 Chi-Chi earthquake, we derive an
61	updated Taiwan velocity field using all available campaign-mode and continuous GPS data collected
62	between 1993 and 1999. We use this velocity field sampled at irregular points to estimate velocities
63	sampled on an arbitrarily fine regular rectangular grid. To obtain a continuous strain-rate field, we
64	compute strain rates from gradients of interpolated velocities. The details of methods are presented in a

65	later section after describing the input GPS-derived velocity observations. We then compare principal
66	strain-rate axes with stress axes derived from earthquake focal mechanisms and discuss their
67	implications. In addition, we provide new insights into the crustal stress field in the Taiwan region.
68	Previous studies based on fault slip data (Angelier et al., 1986), earthquake focal mechanisms
69	(Yeh et al., 1991), borehole breakout data (Suppe et al., 1985) as well as GPS data (Bos et al., 2003;
70	Chang et al., 2003) demonstrate a fan-shaped pattern of maximum compressive or contraction axes in
71	Taiwan. This feature is believed to be affected by the shape of the Chinese continental margin (Hu et al.
72	1996). However, our study shows the correlation between the trends of the maximum contraction or
73	compressive axes and the shape of the Chinese continental margin is not perfect. Furthermore, we find
74	the lateral extrusion in SW Taiwan may not fully explain the sharp variations of strain-rate and stress
75	axes between SW Taiwan and the southern Central Range. The tectonic escape in SW Taiwan is
76	previously inferred from sandbox experiments (Lu and Malavieille, 1994). Data sets based on
77	geological, geodetic and seismological evidences also support this hypothesis (Lu and Malavieille,
78	1994; Lacombe et al., 2001; Bos et al., 2003; Gourley, 2006; Gourley et al., 2007; Hu et al., 2007). The
79	mechanism of the lateral extrusion is perhaps due to low lateral confining stress offshore SW Taiwan
80	and the presence of the Peikang basement high as a rigid indenter (Hu et al., 1996). However, direct
81	onland structural evidence of tectonic extrusion is poor. Based on Quaternary paleostress patterns that
82	that the lateral extrusion have began recently, during the late Pleistocene (Lacombe et al., 2001). On the
83	other hand, we discuss the extension in the Central Range that was first inferred by GPS observations

84 (Yu and Chen, 1994) and was later confirmed by structural fabrics (Crespi et al., 1996) and inferences of the GPS strain-rate field (Bos et al., 2003; Chang et al., 2003). Previous studies suggest that the 85 86 extension in the Central Range resulted from crustal exhumation after the subduction of the South China Sea block (Lin, 2000). The exhumation occurred when the increase of buoyancy forces on the 87 88 light subducted continental crust is sufficient to produce decoupling at the base of the crust (Lin, 2000). Recent work suggests that the extension in northeastern Central Range may be driven by the current 89 collision between the PHP and the basement high indenter (Gourley et al., 2007); while the extension 90 91 in the southern Central Range could be due to the lateral extrusion in SW Taiwan (Gourley, 2006). We 92 suggest that the extension in the Central Range may be a result of exhumation associated with 93 overthickened continental crust or the buoyancy force of the subducted continental crust (Lin, 2000).

94

95 **2. Velocity field**

We use GPS data from between 1993 and 1999 (before the 1999 Chi-Chi earthquake), including 195 campaign-mode sites and 17 continuous stations operated by the Institute of Earth Sciences, Academia Sinica (IES), Ministry of the Interior (MOI) and other institutions. To minimize the impact of atmospheric disturbance in the GPS observations at sub-tropical areas, we divide the full GPS network into several subnets and conduct surveys at each subnet more or less in the same season every year. The surveys at various subnets can be conducted during different seasons of the year. Most of campaign-mode sites used in this study were occupied at least 5 times during this period. We processed

103	the campaign-mode and continuous GPS data using the Bernese v.4.2 software (Hugentobler et al.,
104	2001) with precise ephemerides from the International GNSS services (IGS). The entire GPS data sets
105	are in a consistent reference frame, the International Terrestrial Reference Frame 1997 (ITRF97), by
106	taking the ITRF97 coordinates and velocities of an IGS core site, TSKB (Tsukuba, Japan) as a
107	reference station. Yu and Kuo (2001) give a more detailed description of the procedures for our GPS
108	data acquisition and processing. The normal equations of single-session solutions for a campaign are
109	first combined to create a campaign solution. An annual survey campaign for a specific area usually
110	spans 10-15 days. The multi-year campaign solutions are then combined to estimate the station
111	velocities (Fig. 2). Comparing to previous results of GPS observations between 1991 and 1995 (Yu et
112	al., 1997), the GPS data used in this study is more robust due to the improvement of technology by
113	increasing amount of GPS satellites and using high precision GPS satellite orbits. In addition, more
114	GPS data coverage in time and space facilitate the detection of subtle signals for crustal deformation.
115	The Taiwan interseismic velocity field derived from 1993-1999 GPS measurements is shown in
116	Fig. 2 and also given with pertinent data in Table 1. The Paisha, Penghu, continuous GPS station
117	(S01R), situated on the relatively stable Chinese continental margin, is chosen as the reference site.
118	With respect to Penghu, the GPS velocity increases from north to south in the Costal Plain and the
119	Western Foothills; the maximum rates are mostly less than 5 mm/yr in northern Taiwan, ~25 mm/yr
120	near central Taiwan, then up to ~40 mm/yr in southern Taiwan. The azimuth of GPS velocity also
121	rotates counterclockwise from N70°W near Maoli-Taichung, to N120°W near Kaohsiung. It is worth

122	nothing that GPS velocities vary from ~20 mm/yr south of Tainan to ~50 mm/yr near the Kaohsiung
123	area along the coast (Fig. 2) and the deviation in velocity azimuth is small (less than 15°). This feature
124	may imply the existence of a NE-SW trending shear zone between Tainan and Kaohsiung. In eastern
125	Taiwan, the accumulated crustal strain is mainly accommodated in the NNE trending LVF, bounded by
126	the Longitudinal Valley and the Coastal Range. The velocity in the eastern side of the LVF, the Coastal
127	Range, is 26-68 mm/yr in the direction of ~N50°W whereas that in the western side of the LVF
128	decreases to 18-35 mm/yr in the direction of ~N70°W. The velocity discontinuity across the LVF is
129	about 30 mm/yr. The crustal strain in this region is mainly taken up by aseismic slip, especially near the
130	surface, and earthquakes at greater depths (Yu and Kuo, 2001). In the Ilan plain of northeastern Taiwan,
131	the velocity vectors trend to the southeast with rates of 8-38 mm/yr. This direction is remarkably
132	different from other regions in Taiwan.

133

134 **3. Method to estimate strain-rate field**

In order to obtain a continuous strain-rate field that ensures compatibility, we first estimate a spatially continuous surface velocity field. We adopt a 0.125°×0.125° grid extending from 120°E to 122.25°E and 22°N 25.25°N. We then estimate the east and north components of horizontal velocities at each node using 212 observed GPS horizontal velocities. The contribution of any given observation

- 139 is weighted as a function that decays with increasing distance from the estimation point (Shen *et al.*,
- 140 1996; Ward, 1998). The estimation equation can be written as:

where $O_{ij} = \exp(-d_{ij}^2 / D_i^2)$; \mathbf{v}_e^i and \mathbf{v}_n^i are east and north components of velocities at the ith GPS station; d_{ij} is the distance between the ith GPS station and the jth node; D_i is a spatial length and controls the size of interpolation window. We search for minimum D_i at each GPS station to ensure it located inside the convex hull composed by nodes (the size of D_i is about 30~40 km); $\hat{\mathbf{v}}_e^i$ and $\hat{\mathbf{v}}_n^i$ are estimated north and east component at the jth point. Equation (1) can be written as:

 $147 \quad \boldsymbol{d} = \boldsymbol{G}\boldsymbol{m} \tag{2}$

where d is a matrix of observed GPS velocities, G is a matrix of Green's functions related to the distance between each GPS station and node, and m is the desired velocity field. To ensure the velocity varies smoothly in space and to balance the representative area associated with individual data points, we augment equation (2) to be:

152
$$\begin{bmatrix} Wd \\ 0 \end{bmatrix} = \begin{bmatrix} WG \\ \alpha \nabla^2 \end{bmatrix} m$$
(3)

where ∇^2 is the smoothing matrix using the finite difference approximation of the Laplacian operator; 153 and α serves as the weighting of the model roughness versus data misfit. We choose the value of α 154 by cross-validation (Matthews and Segall, 1993). In order to take account the variable contributions 155 from individual data, we weighted each observation with two types of weighting, including the 156 observational error (W_s) and the station density (W_a) , each one equally contributes to the inversion. The 157 weighting matrix, W, equals to the multiple of W_s and W_a ; where W_s is the reciprocal of observation 158 error, W_a is estimated from the area of the Voronoi cells associated with the geodetic network. The 159 GPS site associated with a given Voronoi cell will be the closest site to any point in that cell. Thus the 160 161 area of cell represents a good metric for the area that a given site should represent. The Voronoi cells for our data set are given in Fig. 3a. Voronoi vertices located offshore are replaced by the closest point 162 on land (Fig. 3b). In addition, we assign a maximum area weighting for several sites located on 163 offshore islands such as Penghu, Luato and Lanhsu. The actual value W_a corresponds to the square root 164 of cell area associated with a given GPS station. Using W_a has the affect of stabilizing the inversion 165 and avoids biased information from irregularly station geometry, such that dense pockets of stations do 166 167 not dominate results. The modeling velocity and residuals are shown in Fig. 4a, b. The strain rate at 168 each node is determined by taking spatial derivatives of modeling velocities, with fully propagated 169 covariance matrix from observed GPS velocities to estimated strain rates (Fig. 4c). Note that the large

170	misfit in modeling velocity in the SW Taiwan and the Longitudinal Valley is possibly associated with
171	fault creep near the surface (Fig. 4b). The sharp velocity discontinuity corresponding to the fault creep
172	at shallow depths can not be reproduced in our method.
173	4. Surface strain rates and crustal stress
174	Earlier studies (Bos et al., 2003; Chang et al., 2003) adopt different methods to estimate the
175	strain-rate filed in Taiwan using GPS velocity between 1990 and 1995 (Yu et al., 1997). Chang et al.
176	(2003) do not consider the GPS velocity errors and the distribution of GPS stations. Bos et al. (2003)
177	describe the surface deformation in terms of the continuous deformation and discrete movements along
178	faults; requiring a priori knowledge of fault geometries. To illustrate the relationship between strain rate
179	and stress in the Taiwan plate boundary zone, we first use the aforementioned method to compute the
180	strain rate field from GPS data between 1993 and 1999 (Fig. 4c) and then compare principal strain-rate
181	axes with stress axes derived from stress tensor inversions. The one standard deviation of dilatation rate
182	is shown in Fig. 4d. The errors are normally around 0.1 µstrain/yr over most of Taiwan and no more
183	than 0.3 µstrain/yr at the southern and northern tips. The inferred dilatation rates in most areas are
184	larger than their errors.

185

186 **4.1 The strain-rate field derived from GPS data**

187 Strain rates computed from GPS velocities indicate SW Taiwan and the Longitudinal Valley in

188	eastern Taiwan are experiencing high NW to W - SE to E contraction with the maximum rates more
189	than 1 µstrain/yr (Fig. 4c). The trends of inferred maximum principal contraction axes in western
190	Taiwan, from north to south, are ~N40°W in the Hsinchu area, ~N70°W in the Taichung area and
191	~N80°W in the Tainan-Kaohsiung area. In the Longitudinal Valley of eastern Taiwan, the maximum
192	contraction axis counterclockwise rotates from N30°W in the Hualien area to N60°W in the Taitung
193	area. The general trends of contraction axes are consistent with previous results based on different
194	approaches (Bos et al., 2003; Chang et al., 2003).
195	In contrast to the contraction regime in western Taiwan and the Longitudinal Valley, northeastern
196	Taiwan and the Central Range show significant extension. The trends of extension axes vary from north
197	to south: they are NW-SE-directed in the Ilan plain, NE-SW-directed near the middle part of the
198	Central Range, and NEE-SWW-directed in the southern Central Range. In northeastern Taiwan,
199	orientations of extension axes show a counterclockwise rotation between offshore Ilan (N40°W) to
200	inland area (N70°W) near 121.5°E, 24.5°N. On the other hand, subtle NE-SW and significant
201	NEE-SWW directed extensions are derived from our model near the middle (~24°N) and southern
202	portions (22°N-23.5°N) of the Central Range, respectively. The first-order pattern of the trend of
203	extension axes corresponds to the results in previous studies (Bos et al., 2003; Chang et al., 2003).
204	

205 **4.2 Principal stress axes derived from stress tensor inversions**

206 The GPS velocities image the surface strain rate, while earthquake focal mechanisms demonstrate

207	the state of stress in the seismogenic crust. In order to tell how strain or stress varies with depth, we
208	examine the stress regime in the crust using earthquake focal mechanisms with depths less than 30 km.
209	We use focal mechanism determining by first-motion polarities of P waves from Wu et al. (2008). They
210	implement a genetic algorithm in a non-linear global search to find the best earthquake focal
211	mechanism with $M_L>4$ between 1991 and 2005. In this study, we only use the data before the Chi-Chi
212	earthquake (1991-1999.7). Alternatively, we could use the earthquake focal mechanisms determined
213	from the modeling of waveforms recorded by the Broadband Array in Taiwan for Seismology (BATS);
214	however, the number of shallow earthquakes (Kao and Jian, 2001) is not sufficient for a stress tensor
215	inversion.

We use the algorithm from Michael (1984; 1987) to find the stress tensor that minimizes the 216 difference between the shear stress on the fault plane and the fault slip rake. In order to find a 217 continuous variation of stress orientations in space, we use a moving-window inversion on the 218 0.25°-spacing grid and include all events within a $0.5^{\circ} \times 0.5^{\circ}$ rectangle centered at the node. We 219 220 estimate the stress tensor only when there are at least 10 earthquakes within a given rectangular box 221 (Fig. 5). The resulting maximum and minimum stress axes projected to the surface are shown in Fig. 6. The length of stress axis is the largest when the plunge is 0° (horizontal) and is close to 0 when the 222 plunge is 90° (vertical). While we attempt to use an adequate number of focal mechanisms to constrain 223 224 the stress field, we are hampered by a limited understanding of the error in the input focal mechanisms. To estimate the quality of stress tensor inversion, we use a bootstrap method re-sampling actual focal 225

226 mechanisms to generate 500 synthetic data sets and then computing the 95% confidence region of principal stress axes (Fig. 5). We find the trend of maximum principal stress axis, σ_1 , is the most 227 228 reliable axis among three and the plunge is close to horizontal, consistent with the compressive stress regime dominant in the Taiwan collision zone. The intermediate and minimum stress axes (σ_2 and σ_3) 229 vary a lot in most regions. Therefore, we only discuss the trend of stress axis, σ_1 , and the maximum 230 principal strain-rate axis in the next section. 231 The ratio of principal stress difference $\phi = \frac{\sigma_2 - \sigma_3}{\sigma_1 - \sigma_3}$ from the stress tensor inversion is shown in 232 Fig. 7. If $\sigma_1 = \sigma_2$, namely $\phi = 1$, the stress status of the crust corresponds to a stress regime transitional to 233 normal faulting; while if $\sigma_2 = \sigma_3$ namely $\phi = 0$, corresponds to a stress regime to thrust faulting. For the 234 value of ϕ close to 0 or 1, represents the near-transitional stress regime that requires only minor 235 fluctuations in stress magnitude to change from one stress regime to the other. 236 237

4.3 Comparison of orientations between strain-rate and stress axes and its implication

To illustrate the variation of faulting type from surface to the crust, we compare the trends of principal strain rates derived from GPS velocity field and principal stress axes derived from earthquake focal mechanisms with depths less than 30 km. In Fig. 6, we find that the orientations of principal strain-rate and stress axes generally agree. This implies that a large scale variation of stress orientations from the surface to the base of the crust is insignificant. Faulting style is consistent with stress buildup resulted from the interseismic loading. The first-order patterns of stress and strain-rate axes at the crust

245	are generally correlated with the plate motion. To further elucidate characteristics of regional structures,
246	we examine areas with sufficient GPS data and earthquake focal mechanisms to detect more subtle
247	variations. These variations may result from regional tectonics, the lithosphere flexural stress due to
248	sediment loading in the continental margin, localized lateral strength contrast associated with material
249	properties, and lateral strength contrast in response to the fault zone (Zoback, 1992).
250	In western Taiwan, the trends of maximum contraction axes and principal compressive axes (Fig.
251	6) are consistent with a fan-shaped pattern that has been demonstrated from various data sets (Suppe et
252	al., 1985; Angelier et al., 1986; Yeh et al., 1991; Bos et al., 2003; Chang et al., 2003). The fan-shaped
253	distribution of maximum contraction and compressive axes are primary influenced by the indenter, the
254	Peikang High (Meng, 1971), in the Chinese continental margin (Hu et al., 1996). To examine this
255	hypothesis, we compare the shape of the West Taiwan foreland basin (Fig. 4d) with orientations of
256	maximum contraction and compressive axes. The Peikang High is located on the western fringe of the
257	foreland basin (Fig. 4d). Seismic and well data suggest that the West Taiwan foreland basin developed
258	by orogenic loading and flexure of a rift-type continental margin (Lin and Watts, 2002). We find that
259	the shape of the foreland is only partially correlated with the trend of maximum contraction or
260	compressive axes (Figs. 4c,d, and 6); therefore, other explanations different from the shape of the
261	Chinese continental margin need to be investigated. Lin and Watts (2002) interpreted that the low and
262	active seismicity on the northern and southern Taiwan foreland basin reflect low and high bending
263	stress due to the curvature of the foreland basin, respectively. The base (~8 km) of the foreland basin is

264	the greatest near Tainan and Kaohsiung areas. The flexural stress due to sediment loading could induce
265	margin-normal extensional stress on the loaded continental shelf and margin-normal compression in the
266	adjacent regions (Stein et al., 1989). Limited by the complex shape of the Chinese continental margin
267	near Tainan and Kaohsiung (Fig. 4d), we can not find a simple correlation between the shape of the
268	Chinese continental margin and orientations of stress or strain-rate axes. A numerical model is needed
269	to further clarify the impact of the sediment loading in the future.
270	In addition, the trends of σ_1 and contraction axes in the Coastal Plain and the Western Foothills
271	between Chiayi and Kaohsiung, are perceptible different by about 20°~40° from those in the southern
272	Central Range (Fig. 6). Regions near SW Taiwan may be experiencing lateral extrusion (Lu and
273	Malavieille, 1994; Lacombe et al., 2001; Bos et al., 2003; Gourley, 2006; Gourley et al., 2007; Hu et
274	<i>al.</i> , 2007). To what extent this lateral-escape tectonic model explains the rotations of σ_1 and contraction
275	axes remain unclear. The strength of crustal material may be very different in SW Taiwan and the
276	southern Central Range, and could provide another source for the rotation of compressive or
277	contraction axes. Earlier studies show that the upper crust of SW Taiwan is composed of the
278	sedimentary wedge (Lacombe et al., 2001) and the P wave velocity is low comparing to that in adjacent
279	regions (Kim et al., 2005; Wu et al., 2007). In contrast to Pre-Tertiary metamorphic complex in the
280	Central Range, the sediments in SW Taiwan are too weak to produce earthquakes at shallow depths
281	(Fig. 8). In summary, we hypothesize that the sharp variations of strain-rate and stress axes between
282	SW Taiwan and the southern Central Range could be associated with the tectonic escape in SW Taiwan

as well as the lateral strength contrast due to different geological materials.

284 Significant extension in northeastern Taiwan (Ilan plain) and the Central Range is inferred from GPS 285 velocity field in this study and some previous work (Bos et al., 2003; Chang et al., 2003). The result of stress tensor inversion in the Ilan plain shows that the σ_1 axis and the σ_3 axis are vertically- and 286 horizontally- oriented, respectively (Fig. 5), consistent with a normal-faulting stress regime. The 287 direction of the tension is consistent with the NW-SE extension derived from GPS velocities. The 288 extension in the Ilan plain is associated with the opening of Okinawa Trough (Sibuet et al., 1987). In 289 terms of the extension in the Central Range, it is mainly constrained by GPS velocities due to limited 290 291 seismicity in the northern portion of the Central Range. Previous studies proposed different hypothesis to explain the extension of the Central Range, including the crustal exhumation due to the increase of 292 buoyancy forces on the light subducted continental crust (Lin, 2000), the current collision between the 293 PSP and the basement high on the EUP (Gourley et al., 2007) as well as the lateral extrusion is SW 294 Taiwan (Gourley, 2006). We suggest that the extension in the Central Range may be a result of 295 exhumation associated with overthickened continental crust and the buoyancy force of the subducted 296 297 continental crust (Lin, 2000). The exhumation in the Central Range may be due to gravitational collapse of the upper most crust. Results from fission track ages (Liu, 1982) inferred that the uplift of 298 299 the Central Range has increased rapidly since about 3 Ma ago to an average of 9 mm/yr during the last 300 0.6 Ma. The crustal thickening corresponding to high topography has been inferred from seismic 301 tomography studies (Kim et al., 2005; Wu et al., 2007). We expect that a negative density anomaly 16

302	associated the root of the thickened crust would produce extensional stress and strain, as has been seen
303	in other orogenies such as the Andes and the Himalayas (Zoback, 1992). Results from the
304	thermokinematic model of the Taiwan mountain belt suggest that crustal thickening and exhumation are
305	sustained by underplating beneath the eastern part of the Central Range (Simoes et al., 2007).
306	In eastern Taiwan, the deformation is primary taken up by left-lateral oblique thrust faulting in
307	LVF (Yu and Kuo, 2001). We find a counterclockwise rotation of σ_1 axis from the northern to southern
308	Longitudinal Valley, a similar pattern is found in strain-rate contraction axes (Fig. 6). The azimuthal
309	changes of principal compressive axes might be correlated with the change of subduction polarity in
310	northern and southern Taiwan (Fig. 1, 8).
311	
312	4.4 The crustal stress field derived from seismicity and focal mechanisms
313	We find most shallow earthquakes are located near the mountain front in western Taiwan (Fig.
314	8). Previous study in the Himalaya shows that the high topography affect the seismicity distribution
315	(Bollinger et al., 2004). To evaluate the impact of high topography on the seismicity pattern in Taiwan,
316	we examine seismicity and earthquake focal mechanisms with $M_L>4$ and depth<30 km (Wu et al.,
317	2008) before and after the Chi-Chi earthquake (Fig. 9). Seismicity near the northeastern CLPF and the
318	northern portion of eastern Central Range (A in Fig. 9b) is quiescent before the Chi-Chi earthquake;
319	while the seismicity becomes active after the Chi-Chi earthquake (Fig. 9). Many normal-faulting
320	earthquakes occur in the Central Range after the Chi-Chi mainshock (A in Fig. 9b). This feature could 17

be an indication of the rotation of maximum principal stress axis from horizontally- to 321 vertically-oriented in response to the high topography. The inferred maximum principal stress (σ_1) in 322 these regions is close to vertical and the minimum principal stress (σ_3) is parallel to the direction of 323 plate motion as indicated in a simple Mohr circle diagram (A in Fig. 10a). Before the Chi-Chi 324 earthquake, the increase of NW-SE directed convergence between the EUP and the PHP (equivalent to 325 the increase of horizontal principal stress σ_3) prohibit fault failures. After the Chi-Chi earthquake, the 326 decrease of NW-SE compression induced normal faulting (A in Fig. 9a). The aseismic zone near the 327 middle part of the Central Range (**B** in Fig. 9b) implies that σ_1 is close to vertical, and σ_2 is parallel to 328 the direction of plate convergence (Fig. 10). The intermediate stress, σ_2 , increases and decreases before 329 330 and after the mainshock, respectively. However, the magnitude of σ_2 has no influence on fault failures 331 (**B** in Fig. 10a). The seismic activity is always low beneath the middle part of the Central Range (Fig. 9). The strike-slip and normal faulting near the southern Central Range (C in Fig. 9b) suggest the 332 magnitude of σ_1 is close to σ_2 (Fig. 10b). There are more strike-slip events than normal events in 333 southern Central Range before the Chi-Chi earthquake; while after the Chi-Chi earthquake, we find the 334 opposite (more normal events than strike slip events) (Fig. 9). This implies that the σ_1 become more 335 aligned with the vertical direction after the Chi-Chi earthquake. Indeed, we find that the ratio of 336 337 principal stress difference, ϕ , is close to 1 in southern Central Range before the Chi-Chi mainshock 338 (Fig. 7). This represents a transitional stress regime of strike-slip faulting to normal faulting that 339 required only minor stress fluctuations in stress magnitude to change from one stress regime to the

340	other. Regions with elevations lower than ~1500 m, for instance, the Western Foothills and the
341	Longitudinal Valley (D , E in Fig. 9b), show little effect in topography that σ_1 axes are the maximum
342	horizontal compressive stress. The focal mechanisms include both thrust-faulting and strike-slip
343	faulting. The faulting style does not vary a lot before and after the Chi-Chi mainshock. The inferred
344	directions of principal stress axes in Taiwan are summarized in Fig. 10b.
345	The state of the inferred crustal stress field could be used in seismic cycle modeling as a priori
346	constrains from independent studies. In addition, we provide constraints for the orientation of the
347	regional stress which is a key parameter in studies of Coulomb stress change (Toda et al., 1998). Our
348	results also can apply to the estimates of stress magnitude in the crust by examining how regional stress
349	field react to the stress perturbations from large earthquakes.
350	
351	5. Interseismic strain rates near the rupture area of the 1999 Chi-Chi earthquake
352	One major goal of using the strain rate field in our study is to identify regions with potential
353	seismic hazards. We are particular interested in seeking for variations of strain-rate and seismicity
354	before the 1999 M_w 7.6 Chi-Chi earthquake. This earthquake nucleated at 8-10 km depth and generated
355	a 100 km-long surface rupture. Yu et al. (2001) analyze preseismic GPS data and conclude that there

- are no abnormal signals in GPS position time series before the occurrence of the Chi-Chi earthquake.
- 357 Therefore, we focus on investigating the spatial variation of the secular strain-rate and seismicity using
- 358 GPS observations and earthquake data before the Chi-Chi mainshock.

359	The region near the Chi-Chi coseismic rupture is characterized with a moderate shortening rate of
360	25 mm/yr in a 40-km-wide zone from eastern boundary of the Western Foothill to the Coastal Plain
361	(Fig. 4c). The most distinct feature in this region is that areas with high seismicity (mostly M_L <4)
362	surround the Taichung basin in the interseismic period (Fig. 8). The location of this seismic zone
363	indicates the boundary of the contraction area to the west and the extension area to the east in central
364	Taiwan (Fig. 8). This seismic zone is also consistent with the location of western limit of décollement
365	(Fig. 8) that slips at a rate of about 30 mm/yr over the interseismic period (Dominguez et al., 2003; Hsu
366	et al., 2003). Because of high stress concentration on the tip of décollement, the level of small
367	magnitude seismic activity is high. Previous kinematic modeling using interseismic GPS velocity field
368	suggest that the western end of the décollement is the locked area where major earthquakes might occur
369	(Dominguez et al., 2003; Hsu et al., 2003), and their results are surprisingly consistent with the rupture
370	area of the Chi-Chi earthquake (Fig. 8). Our study infers a high contraction rate of about 0.6 µstrain/yr
371	in central Taiwan corresponding to the Chi-Chi rupture area as well.

It is worth noting that the strain rate in the rupture area of Chi-Chi earthquake is not the largest, in particular, rates are higher in SW Taiwan and the Longitudinal Valley. The interseismic strain rate may be greater than the average strain rate of the seismic cycle after the earthquake; while it becomes smaller than the average before the next future earthquake (Segall, 2002). Obviously, areas with small strain rate in the interseismic period still have potential to generate large earthquakes, either they are in a late stage of the seismic cycle or they need longer strain accumulation period.

378	We find most shallow earthquakes locate near the mountain front in western Taiwan; while the
379	shallow seismicity primary distribute to the east of the Coastal Range in eastern Taiwan (Fig. 8).
380	According to the historic earthquakes in past century and the characteristics of seismicity distribution in
381	central Taiwan, small earthquakes tend to surround the locked fault zone in the interseismic period. The
382	future earthquake probabilities are high in the western Taiwan and the Longitudinal Valley. To have a
383	better estimate of possible earthquake rupture sources in these regions, we need to carefully investigate
384	all available geodetic, seismological, as well as geological data.
385	

386 6. Conclusion

387 We use the interseismic GPS velocity field between 1993 and 1999 to estimate the strain-rate field. Our new approach of strain-rate calculation takes account of the contribution of variable station density 388 from the distribution of Voronoi cells and avoids dominating results by dense pockets of observations. 389 390 The strain-rate field shows that the Longitudinal Valley and SW Taiwan have high NW-SE-directed 391 contraction in contrast to high NW-SE to NEE-SWW-directed extensions in NE Taiwan and southern 392 Central Range, respectively. The first-order pattern of the strain-rate field is consistent with previous 393 studies. In addition, we conduct the stress tensor inversion using earthquake focal mechanisms to 394 obtain the crustal stress field. The consistency of orientations in principal strain-rate and stress axes 395 suggests that a large scale variation of stress orientations from the surface to the base of the crust is

insignificant. The stress and strain-rate axes in western Taiwan show a fan-shaped pattern. However, 396 397 we find that the shape of the Chinese continental margin alone can not fully explain the distribution of 398 maximum contractive and compressive axes in Taiwan. Extension in the Central Range reflects the consequence of exhumation and crustal thickening. The seismicity and focal mechanisms before and 399 after the Chi-Chi earthquake imply that the high topography in the Central Rage have changed the 400 maximum principal stress axis to be vertically orientated. Analyses of geodetic and seismological data 401 before the 1999 Chi-Chi earthquake shows the consistency between the inferred locked zone and the 402 Chi-Chi coseismic rupture area. Integrating studies using all available data is important to shed new 403 404 light on earthquake rupture sources.

405

406 Acknowledgments

We are grateful to many colleagues at the Institute of Earth Sciences, Academia Sinica who have participated in collecting GPS data. The generous provision of continuous GPS data by Ministry of the Interior, National Cheng-Kung University, National Chiao-Tung University and IGS community are greatly appreciated. We thank the editor, Dr. D. Brown, Dr. J. Malavieille and an anonymous reviewer for their constructive comments, Y. M. Wu kindly provide earthquake focal mechanisms, J.-P. Avouac and W. T. Liang provide valuable suggestions. Several figures were created using GMT written by Wessel and Smith. This study are supported by the Institute of Earth Sciences, Academia Sinica, the

- 414 National Science Council of the Republic of China grant NSC 95-2119-M-001-064-MY3 and NSC
- 415 95-2745-M-001-005, the National Science Foundation grant EAR-0537625 to Caltech, and the Gordon
- 416 and Betty Moore Foundation. This is a contribution of the Institute of Earth Sciences, Academia Sinica,
- 417 IESAS1287, Caltech Seismological Laboratory contribution number 10004, and Caltech Tectonics
- 418 Observatory number 84.

A CLARANCE

419 **Reference**

- Angelier, J., E. Barrier, and H. T. Chu, 1986. Plate collision and paleostress trajectories in a fold thrust
 belt the foothills of Taiwan, *Tectonophysics*, *125*, 161-178.
- Barrier, E., and J. Angelier, 1986. Active collision in eastern Taiwan the Coastal Range, *Tectonophysics*, 125, 39-72.
- 424 Biq, C. C., 1972. Dual trench structure in the Taiwan-Luzon region, *Proc. Geol. Soc. China*, 15, 65-75.
- Bollinger, L., J. P. Avouac, R. Cattin, and M. R. Pandey, 2004. Stress buildup in the Himalaya, J. *Geophys. Res.*, 109, doi:10.1029/2003JB002911.
- Bos, A. G., W. Spakman, and M. C. J. Nyst, 2003. Surface deformation and tectonic setting of Taiwan
 inferred from a GPS velocity field, *J. Geophys. Res.*, *108*, doi:10.1029/2002JB002336.
- Chang, C. P., T. Y. Chang, J. Angelier, H. Kao, J. C. Lee, and S. B. Yu, 2003. Strain and stress field in
 Taiwan oblique convergent system: constraints from GPS observation and tectonic data, *Earth Planet. Sci. Lett.*, 214, 115-127.
- 432 Crespi, J. M., Y. C. Chan, and M. S. Swaim, 1996. Synorogenic extension and exhumation of the
 433 Taiwan hinterland, *Geology*, 24, 247-250.
- Dominguez, S., J. P. Avouac, and R. Michel, 2003. Horizontal coseismic deformation of the 1999
 Chi-Chi earthquake measured from SPOT satellite images: Implications for the seismic cycle
 along the western foothills of central Taiwan, *J. Geophys. Res.*, 108, doi:10.1029/2001JB000951.
- Gourley, J. R., 2006. Syn-tectonic extension and lateral extrusion in Taiwan: the tectonic response to
 a basement high promontory, University of Connecticut, Ph.D. dissertation, pp.129.
- Gourley, J. R., T. Byrne, Y. C. Chan, F. Wu, and R. J. Rau, 2007. Fault geometries illuminated from
 seismicity in central Taiwan: Implications for crustal scale structural boundaries in the northern
 Central Range, *Tectonophysics*, 445, 168-185.
- Ho, C. S., 1986. A synthesis of the geologic evolution of Taiwan, *Tectonophysics*, 125, 1-16.
- Hsu, T. L., 1976. Neotectonics of the Longitudinal Valley, eastern Taiwan, *Bull. Geol. Surv. Taiwan*, 25, 53-62.
- Hsu, Y. J., M. Simons, S. B. Yu, L. C. Kuo, and H. Y. Chen, 2003. A two-dimensional dislocation model
 for interseismic deformation of the Taiwan mountain belt, *Earth Planet. Sci. Lett.*, *211*, 287-294.
- Hu, J. C., J. Angelier, J. C. Lee, T. H. Chu, and D. Byrne, 1996. Kinematics of convergence,
 deformation and stress distribution in the Taiwan collision area: 2-D finite-element numerical
 modelling, *Tectonophysics*, 255, 243-268.
- Hu, J. C., C. S. Hou, L. C. Shen, Y. C. Chan, R. F. Chen, C. Huang, R. J. Rau, K. H. H. Chen, C. W. Lin,
 M. H. Huang, and P. F. Nien, 2007. Fault activity and lateral extrusion inferred from velocity field
 revealed by GPS measurements in the Pingtung area of southwestern Taiwan, *J Asian Earth Sci*, *31*, 287-302.
- Huang, C. Y., W. Y. Wu, C. P. Chang, S. Tsao, P. B. Yuan, C. W. Lin, and K. Y. Xia, 1997. Tectonic
 evolution of accretionary prism in the arc-continent collision terrane of Taiwan, *Tectonophysics*,

- *281*, 31-51.
- Hugentobler, U., S. Schaer, and P. Fridez 2001. Bernese GPS software v. 4.2, Astronomical Institute,
 University of Berne, Switzerland, 515pp.
- Kao, H., and P. R. Jian, 2001. Seismogenic patterns in the Taiwan region: insights from source
 parameter inversion of BATS data, *Tectonophysics*, 333, 179-198.
- Kim, K. H., J. M. Chiu, J. Pujol, K. C. Chen, B. S. Huang, Y. H. Yeh, and P. Shen, 2005.
 Three-dimensional V-P and V-S structural models associated with the active subduction and collision tectonics in the Taiwan region, *Geophys. J. Int.*, *162*, 204-220.
- Lacombe, O., F. Mouthereau, J. Angelier, and B. Deffontaines, 2001. Structural, geodetic and
 seismological evidence for tectonic escape in SW Taiwan, *Tectonophysics*, *333*, 323-345.
- Lin, A. T., and A. B. Watts, 2002. Origin of the West Taiwan basin by orogenic loading and flexure of a
 rifted continental margin, *J. Geophys. Res.*, 107.
- Lin, C. H., 2000. Thermal modeling of continental subduction and exhumation constrained by heat
 flow and seismicity in Taiwan, *Tectonophysics*, *324*, 189-201.
- Liu, T. K., 1982. Tectonic implication of fission track ages from the Central Range, Taiwan, *Proc. Geol. Soc. China*, *25*, 22-37.
- Lu, C. Y., and J. Malavieille, 1994. Oblique convergence, indentation and rotation tectonics in the
 Taiwan mountain belt insights from experimental modeling, *Earth Planet. Sci. Lett.*, *121*,
 474 477-494.
- Matthews, M. V., and P. Segall, 1993. Estimation of depth-dependent fault slip from measured surface
 deformation with application to the 1906 San-Francisco earthquake, *J. Geophys. Res.*, *98*,
 12153-12163.
- Meng, G. Y., 1971. A conception of the evolution of the island of Taiwan and its bearing on the
 development of the western Neogene sedimentary basin, *Petrol. Geol. Taiwan*, *9*, 241-258.
- 480 Michael, A. J., 1984. Determination of stress from slip data faults and folds, *J. Geophys. Res.*, 89,
 481 1517-1526.
- 482 Michael, A. J., 1987. Use of focal mechanisms to determine Stress a control study, *J. Geophys. Res.*,
 483 92, 357-368.
- 484 Segall, P., 2002. Integrating geologic and geodetic estimates of slip rate on the San Andreas fault
 485 system, *Int. Geology Rev.*, 44, 62-82.
- 486 Seno, T., S. Stein, and A. E. Gripp, 1993. A model for the Motion of the Philippine Sea Plate consistent
 487 with Nuvel-1 and geological Data, *J. Geophys. Res.*, *98*, 17941-17948.
- Shen, Z. K., D. D. Jackson, and B. X. Ge, 1996. Crustal deformation across and beyond the Los
 Angeles basin from geodetic measurements, *J. Geophys. Res.*, 101, 27957-27980.
- Sibuet, J. C., J. Letouzey, F. Barbier, J. Charvet, J. P. Foucher, T. W. C. Hilde, M. Kimura, L. Y. Chiao,
 B. Marsset, C. Muller, and J. F. Stephan, 1987. Back arc extension in the Okinawa trough, *J. Geophys. Res.*, *92*, 14041-14063.

- Simoes, M., J. P. Avouac, O. Beyssac, B. Goffe, K. A. Farley, and Y. G. Chen, 2007. Mountain building
 in Taiwan: A thermokinematic model, *J. Geophys. Res.*, *112*, doi:10.1029/2006JB004824.
- Stein, S., S. Cloetingh, N. H. Sleep, and R. Wortel, 1989. Passive margin earthquakes, stresses and
 rheology. In Earthquakes at North-Alantic passive margins: neotectonics and postglacial respond, *NATO ASI Ser. C*, Kluwer Academic, Boston, Mass., pp.231-259.
- Suppe, J., 1984. Kinematics of arc-continent collison, flipping of subduction, and back-arc spreading
 near Taiwan, *Mem. Geol. Soc. China*, 21-33.
- Suppe, J., C. T. Hu, and Y. J. Chen, 1985. Preset-day stress directions in western Taiwan inferred from
 borehole elongation, *Petrol. Geol. Taiwan*, 21, 1-12.
- 502 Teng, L. S., 1996. Extensional collapse of the northern Taiwan mountain belt, *Geology*, 24, 949-952.
- Toda, S., R. S. Stein, P. A. Reasenberg, J. H. Dieterich, and A. Yoshida, 1998. Stress transferred by the
 1995 M-w = 6.9 Kobe, Japan, shock: Effect on aftershocks and future earthquake probabilities, *J. Geophys. Res.*, 103, 24543-24565.
- Ward, S., 1998. On the consistency of earthquake moment rates, geological fault data, and space
 geodetic strain: the United States, *Geophys. J. Int.*, 134, 172-186.
- 508 Wu, F. T., 1978. Recent tectonics in Taiwan, J. Pyhs. Earth, 26, 265-299.
- Wu, Y. M., C. H. Chang, L. Zhao, J. B. H. Shyu, Y. G. Chen, K. Sieh, and J. P. Avouac, 2007. Seismic tomography of Taiwan: Improved constraints from a dense network of strong motion stations, *J. Geophys. Res.*, *112*, doi:10.1029/2007JB004983.
- Wu, Y. M., L. Zhao, C. H. Chang, and Y. J. Hsu, 2008. Focal-mechanism determination in Taiwan by
 genetic algorithm, *Bull. Seismol. Soc. Am.*, 98, 651-661.
- Yeh, Y. H., E. Barrier, C. H. Lin, and J. Angelier, 1991. Stress tensor analysis in the Taiwan area from
 focal mechanisms of earthquakes, *Tectonophysics*, 200, 267-280.
- Yu, S. B., and H. Y. Chen, 1994. Global Positioning System measurements of crustal deformation in the
 Taiwan arc-continent collision zone, *TAO*, *5*, 477-498.
- Yu, S. B., H. Y. Chen, and L. C. Kuo, 1997. Velocity field of GPS stations in the Taiwan area,
 Tectonophysics, 274, 41-59.
- Yu, S. B., and L. C. Kuo, 2001. Present-day crustal motion along the Longitudinal Valley Fault, eastern
 Taiwan, *Tectonophysics*, *333*, 199-217.
- Zoback, M. L., 1992. First- and second-order patterns of stress in the lithosphere: The world stress map
 project *J. Geophys. Res.*, *97*, 11703-11728.
- 524
- 525
- 526
- 527
- 528
- 529

530 **Figure captions**

Figure 1 Tectonic setting in the Taiwan plate boundary zone. In the north, the Philippine Sea plate subducts beneath the Ryukyu Arc; while to the south, the South China Sea block of the Eurasian plate subducts beneath the Philippine Sea plate. The grey colors show the shaded relief topography and bathymetry. Hatched area indicates the Peikang basement high in the Chinese continental margin.

536

Figure 2 Taiwan GPS velocity field relative to Paisha, Penghu between 1993 and 1999. Blue and red
vectors with 95% confidence ellipses show velocities of sites located to the west and to the east of
the Longitudinal fault (LVF), respectively. The grey color shaded relief indicates the topography.
Major faults are indicated as black lines. White dots correspond to GPS stations. The star denotes the
epicenter of 1999 Chi-Chi earthquake. The area between the CLPF and the yellow line indicates the
region where the Chi-Chi coseismic slip is larger than 1 m

543

Figure 3 The Voronoi diagram associated with the distribution of GPS sites used in this study. (a)
The Voronoi cell (polygon) associated with each site indicates the region represented by that
particular site. (b) The Voronoi diagram modified to remove extension of the cells off shore.

547

Figure 4 (a) Observed and interpolated GPS velocities shown as black and red vectors, respectively; (b) Residual velocities after removal of the interpolated field; (c) Dilatation and principal strain rates. The color scale indicates dilatation rate in µstrian/yr. Black (contraction) and grey (extension) vectors denote the two principal strain-rate axes. Major faults are indicated as green lines. The star denotes the epicenter of 1999 Chi-Chi earthquake. (d) One standard deviation in µstrian/yr for the dilatation rate. The base of foreland basin is indicated in red contours at intervals of 1 km. The azimuths of maximum contractional strain-rate axes are shown in grey contours at intervals of 20°.

555 Note that the azimuth counts from the north, counterclockwise rotation is negative.

556

Figure 5 Results of the stress tensor inversions. Squares, triangles, and circles represent three principal stress axes, σ_1 , σ_2 and σ_3 , in equal-area projection of the lower hemisphere. The best solution is marked by large symbols with white outlines. The small symbols show the distribution of stress axes within 95% confidence region.

561

Figure 6 The principal strain-rate (black) and stress (red) axes. Surface projections of the σ_1 and σ_3 axes are the largest when the plunges are 0° (horizontal) and are close to 0 when the plunges are 90° (vertical).

565

Figure 7 Grey color and texts denote the ratio of principal stress difference $\phi = \frac{\sigma_2 - \sigma_3}{\sigma_1 - \sigma_3}$ from the stress tensor inversion. If $\sigma_1 = \sigma_2$, namely $\phi = 1$, corresponds to a stress regime transitional to normal faulting; while if $\sigma_2 = \sigma_3$, namely $\phi = 0$, corresponds to a stress regime transitional to thrust faulting.

570

Figure 8 The seismicity and dilatation rate in the Taiwan area. The seismicity with $M_L>3$ between 1990 and 1999.7 is located by the Central Weather Bureau (CWB) seismic network in Taiwan. Color circle indicates earthquake focal depth and its size is proportional to the magnitude.. The red and blue colors show the dilatation field in Figure 4c. The area between the CLPF and the light blue line indicates the region where the Chi-Chi coseismic slip is larger than 1 m. The purple dash line shows the western end of interseismic slip on the décollement from Hsu et al. (2003).

577

578 Figure 9 Earthquake focal mechanisms with $M_L > 4$ and Depth<30 km from Wu et al. (2008) (a) Focal

579	mechanisms before and after 1999.7 (the Chi-Chi earthquake) are shown as blue and red,
580	respectively; The green and blue lines denote the CLPF and the elevation of 1500 m, respectively;
581	(b) Focal mechanisms between 1999.7 and 2001.7 (after the Chi-Chi earthquake).
582	
583	Figure 10 The orientations of principal stress axes (a) The Mohr circle represents the stress of the crust

- 584 in area *A* and *B* denoted in Figure 9b. The straight line indicates the strength of the crust; (b)
- 585 Inferred stress axes from seismicity distribution and focal mechanisms

586 Fig 1

587

588 Fig 2

590 Fig 3a

598 Fig 4c

600 Fig 4d

604 Fig 6

606 Fig 7

2

608 Fig 8

612 Fig 9b

614 Fig 10a

616 Fig 10b

618 Table 1. Station velocity with respect to Paisha, Penghu (S01R) on two sides of the Longitudinal

619 Valley fault (LVF)

Station	Longitude	Latitude	V	Azi	а	b	Azi _a	n	time span
	(°)	(°)	(mm/yr)	(°)	(mm/yr)	(mm/yr)	(°)		
Sites to th	e west of the	LVF				Q-`			
0054	121.1989	23.1286	32.8	298	0.5	0.4	86	8	1993.4-1999.4
0107	120.8442	24.4444	6.3	291	0.3	0.3	85	7	1993.5-1999.6
0131	121.5431	23.9636	19.0	308	0.3	0.3	85	11	1993.4-1999.6
0135	121.3486	23.2908	55.8	317	0.5	0.4	78	8	1993.4-1999.4
0201	121.3200	23.3539	32.8	302	0.9	0.9	67	7	1994.2-1999.4
0206	121.1092	22.8100	45.1	279	0.5	0.5	86	7	1993.4-1999.4
0207	121.1475	22.8178	58.6	303	0.6	0.6	70	6	1993.4-1998.3
0211	121.1419	22.7533	40.9	287	0.5	0.4	91	9	1993.4-1999.4
0216	121.6308	24.0228	14.3	313	0.4	0.3	79	10	1993.4-1999.4
0241	121.3347	23.3361	52.0	310	0.9	0.9	45	6	1994.2-1999.4
0242	121.3250	23.2961	58.3	317	1.4	1.3	45	5	1995.2-1999.4
0283	121.2336	23.1178	64.1	311	0.6	0.6	75	6	1993.4-1998.3
0437	120.4675	23.2369	21.2	275	0.9	0.8	92	6	1993.4-1998.5
0504	121.6975	24.7311	8.3	131	0.3	0.3	86	6	1993.5-1999.6
0505	121.7569	24.7464	11.7	136	0.4	0.4	99	7	1994.9-1999.6
0544	120.6333	22.7828	50.2	268	0.6	0.5	103	7	1995.3-1999.4
0575	120.6639	22.4139	52.7	269	2.3	2.1	94	3	1997.1-1999.4
0621	120.4339	22.7897	48.7	258	0.4	0.3	95	11	1993.4-1999.0
0727	121.3925	23.6056	30.3	298	0.4	0.4	80	9	1993.4-1999.4
0801	121.4936	25.2122	2.2	180	0.4	0.4	116	7	1993.2-1998.9
0971	121.6958	24.6633	16.7	113	0.4	0.3	85	8	1994.9-1999.6
0980	121.1714	24.8889	1.0	249	0.4	0.3	77	9	1993.5-1999.6
0982	121.4575	25.1133	4.8	129	0.4	0.4	91	6	1993.2-1998.9
0991	121.3306	25.0167	1.3	233	0.5	0.5	74	9	1993.2-1998.9
0996	121.8017	24.8706	5.7	167	0.3	0.3	82	10	1993.5-1999.6
1043	121.5486	24.9925	2.2	87	1.1	1.0	109	5	1993.2-1997.9
1045	121.6075	25.1292	4.4	137	0.4	0.4	88	7	1993.2-1998.9
1055	121.6992	25.1089	3.7	147	0.5	0.5	83	6	1993.2-1998.9
1063	121.6700	25.1775	4.4	139	0.4	0.4	79	6	1993.2-1998.9

1064	121.5292	25.0842	1.9	127	0.4	0.3	83	7	1993.2-1998.9
1102	121.4778	25.1442	1.5	132	0.8	0.7	144	4	1995.3-1998.9
1119	121.6039	25.2528	2.6	143	0.5	0.5	39	6	1993.2-1998.9
1139	121.7442	24.8050	9.1	140	0.4	0.4	90	7	1993.5-1999.6
1168	121.7756	25.1431	5.2	124	0.5	0.4	76	9	1993.2-1998.9
1172	121.3156	23.2858	54.2	311	1.7	1.5	1	4	1995.2-1999.4
1178	121.2825	23.2911	29.6	302	1.6	1.6	132	4	1995.2-1999.4
1215	121.5869	23.8878	28.0	316	0.4	0.4	70	8	1993.4-1999.4
13R3	121.3247	23.3144	41.8	306	1.7	1.5	37	5	1995.2-1999.4
13R4	121.2989	23.3017	33.0	302	1.5	1.4	34	4	1995.2-1999.4
1449	121.4044	24.0203	17.4	328	1.9	1.8	96	6	1994.2-1999.6
5936	121.1267	24.0131	22.7	295	0.3	0.2	81	10	1993.5-1999.6
6267	121.3953	24.6844	2.9	330	0.3	0.3	83	7	1994.9-1999.6
6389	121.2847	24.1525	22.2	321	0.3	0.2	85	9	1993.5-1999.6
6636	120.6519	22.5822	50.6	272	0.6	0.6	112	5	1995.3-1999.4
7205	120.7656	23.0750	44.4	271	0.4	0.3	90	14	1993.4-1999.4
8046	121.1764	23.0825	33.8	294	0.6	0.5	88	7	1993.4-1999.4
8152	121.4872	23.6453	48.3	316	1.5	1.2	82	5	1996.1-1999.4
A247	120.4078	24.0206	4.2	276	0.3	0.3	76	7	1993.5-1999.6
C006	120.5367	23.0775	37.3	271	0.7	0.6	114	3	1996.1-1999.0
CHNL	120.5633	23.3772	22.8	241	0.9	0.9	112	8	1997.9-1999.0
CHSN	121.5533	25.1708	2.4	140	0.4	0.4	108	7	1993.2-1998.9
CK01	120.2106	22.9758	14.5	260	0.2	0.2	73	16	1994.1-1999.6
CKLS	121.8656	25.0931	3.0	138	0.4	0.3	73	10	1993.5-1999.6
CPUL	120.6347	23.9275	6.0	287	0.3	0.3	75	10	1993.5-1999.6
FCWS	121.2497	24.8506	2.0	288	0.2	0.1	80	21	1993.5-1999.6
FLNM	121.4533	23.7464	25.8	307	0.2	0.1	92	24	1994.1-1999.6
FONS	120.3817	22.5300	47.4	246	0.5	0.4	87	11	1993.4-1999.4
G013	120.5511	22.4714	48.7	265	2.6	2.4	95	3	1997.1-1999.4
G017	120.5983	22.8272	56.1	265	1.7	1.7	101	4	1997.1-1999.0
G023	120.4686	22.6147	52.7	266	2.6	2.4	95	4	1997.1-1999.4
HTZS	120.9819	23.9739	18.2	291	0.3	0.2	81	9	1993.5-1999.6
I001	121.4789	24.9967	2.1	158	0.4	0.4	78	6	1993.2-1998.9
I004	120.2392	22.9736	11.7	249	0.6	0.5	89	10	1993.4-1998.0
I007	120.7744	23.7561	14.4	292	0.3	0.2	76	15	1993.4-1999.6
I029	121.8167	24.7678	13.0	138	0.3	0.3	81	7	1993.5-1999.6
I042	120.2528	22.7700	22.6	259	0.3	0.3	108	11	1993.4-1999.6

I045	120.3275	22.6675	48.7	246	0.4	0.4	105	11	1993.4-1999.4
I301	121.7717	24.6839	20.7	123	0.4	0.4	100	6	1994.9-1999.6
JFES	120.8417	23.9344	15.1	294	0.4	0.3	76	8	1993.5-1999.6
KDNM	120.7819	21.9494	36.3	277	0.2	0.2	100	22	1994.1-1999.6
KLUN	121.3842	24.9958	0.9	247	0.3	0.3	70	14	1993.2-1999.6
KUYN	121.0761	25.0375	2.5	154	0.4	0.4	89	7	1993.5-1999.6
LIUC	120.3786	22.3408	48.3	241	0.6	0.5	77	8	1993.4-1999.4
MERK	120.3094	23.7975	1.6	215	0.3	0.3	79	14	1993.4-1999.6
N091	121.2522	25.0014	2.5	169	0.5	0.4	102	6	1995.3-1999.6
NCTU	120.9972	24.7889	4.5	321	0.3	0.3	95	14	1995.9-1999.6
P049	121.5808	25.1656	3.8	116	0.8	0.8	143	5	1993.2-1997.9
PKGM	120.3056	23.5800	7.7	327	0.2	0.2	95	17	1995.2-1999.6
S002	119.4386	23.2133	0.2	191	0.4	0.3	99	6	1993.4-1999.6
S003	120.1628	23.1731	2.5	252	0.4	0.3	108	11	1993.4-1999.0
S004	120.1886	23.3825	3.4	303	0.4	0.3	77	8	1993.4-1998.6
S005	120.2167	23.5992	2.4	80	0.5	0.4	79	7	1993.4-1998.6
S007	120.3831	23.2542	13.0	277	0.5	0.4	81	7	1993.4-1998.6
S008	120.4436	23.4200	11.3	287	0.5	0.5	79	7	1993.4-1998.6
S011	120.3394	23.2056	10.5	286	0.2	0.2	87	12	1993.4-1999.6
S012	120.4883	23.0594	33.2	270	0.2	0.2	97	12	1993.4-1999.6
S013	120.5636	23.2536	27.6	280	0.4	0.4	84	7	1993.4-1998.6
S014	120.6489	23.4044	22.7	273	0.4	0.4	92	8	1993.4-1998.6
S015	120.6814	23.5550	15.8	294	0.5	0.4	90	8	1993.4-1998.6
S016	120.8028	24.1794	9.2	286	0.3	0.2	79	8	1993.5-1999.6
S017	120.7644	24.6011	3.6	297	0.4	0.3	92	9	1993.5-1999.6
S018	121.0003	24.8833	2.6	228	0.3	0.3	87	9	1993.5-1999.6
S019	121.2914	25.1022	2.6	215	0.4	0.4	42	10	1993.2-1999.6
S01R	119.5925	23.6553	0.0	91	0.0	0.0	180	30	1993.2-1999.6
S020	121.5122	25.2853	2.5	201	0.4	0.4	84	8	1993.2-1998.9
S021	120.7131	21.9950	44.6	266	0.7	0.6	104	6	1993.4-1999.4
S022	120.6239	22.3664	48.6	268	0.5	0.4	87	7	1993.4-1999.4
S024	120.7036	22.9156	51.5	269	0.4	0.3	54	8	1993.4-1998.2
S025	120.8244	23.2636	30.8	275	0.5	0.5	83	7	1993.4-1998.5
S026	120.9164	23.2822	32.3	280	0.4	0.4	84	9	1993.4-1998.5
S027	120.8894	23.4839	28.2	282	0.3	0.3	85	15	1993.4-1999.4
S028	121.1425	23.7517	26.7	295	0.6	0.4	100	8	1994.2-1999.6
S029	121.5181	25.1272	2.0	165	0.4	0.4	95	7	1993.2-1998.9

S030	121.0275	24.2806	9.3	300	0.7	0.6	81	6	1993.5-1998.5
S031	121.3081	24.3378	10.0	321	0.3	0.3	82	10	1993.5-1999.6
S032	121.1139	24.5064	14.1	303	0.3	0.2	79	9	1993.5-1999.6
S033	121.2800	23.1031	63.5	312	0.5	0.4	84	7	1993.4-1999.4
S034	121.7742	24.8647	7.6	122	0.7	0.7	68	5	1996.3-1999.6
S035	121.9994	25.0056	4.8	156	0.3	0.3	72	10	1993.5-1999.6
S039	121.2758	23.2764	31.5	302	0.4	0.3	89	9	1993.4-1999.4
S040	121.1500	23.0306	33.5	292	0.4	0.4	85	8	1993.4-1999.4
S041	120.8489	21.9261	35.9	286	0.7	0.7	116	7	1993.4-1999.4
S042	120.8550	22.2419	42.4	281	0.5	0.4	98	10	1993.4-1999.4
S043	120.9350	22.4717	37.4	286	0.4	0.4	95	8	1993.4-1999.4
S044	121.0225	22.6778	31.2	281	0.4	0.4	92	11	1993.4-1999.4
S045	121.0806	22.8803	31.4	289	0.4	0.4	89	8	1993.4-1999.4
S046	121.0550	23.1472	31.3	292	0.4	0.4	87	8	1993.4-1999.4
S047	121.3594	23.4708	34.0	307	0.4	0.3	89	13	1993.4-1999.4
S048	121.4050	23.7094	24.6	299	0.3	0.3	82	14	1993.4-1999.6
S049	121.5406	23.8867	23.0	303	0.3	0.3	83	13	1993.4-1999.6
S050	121.6625	24.1453	7.8	278	0.3	0.3	88	12	1993.4-1999.6
S052	121.8678	24.5939	37.9	149	0.4	0.3	95	9	1994.9-1999.6
S053	121.7781	24.3972	22.9	140	0.4	0.4	105	9	1994.9-1999.6
S054	121.1975	22.7939	63.6	307	0.5	0.4	95	7	1993.4-1999.4
S055	121.1228	23.1342	32.1	293	0.6	0.5	90	7	1993.4-1999.4
S056	121.1986	23.0369	62.5	306	0.5	0.4	83	7	1993.4-1999.4
S057	121.3092	22.9731	65.8	309	0.4	0.4	90	7	1993.4-1999.4
S058	121.4544	23.3194	64.6	316	0.2	0.2	91	21	1993.4-1999.4
S059	121.5133	23.4883	66.3	315	0.5	0.5	79	7	1993.4-1999.4
S061	121.5589	23.7511	33.6	325	0.4	0.4	78	7	1993.4-1999.4
S064	120.5039	22.9486	47.1	270	0.6	0.5	88	9	1993.4-1998.0
S065	120.6111	23.1200	37.3	276	0.4	0.4	82	10	1993.4-1999.4
S066	120.5117	23.1922	29.9	277	0.6	0.5	79	7	1993.4-1998.5
S067	120.3839	22.9514	25.0	255	0.4	0.4	110	7	1993.4-1999.0
S068	120.3664	23.0853	10.8	254	0.8	0.7	126	5	1993.4-1999.0
S069	120.5011	23.3264	23.5	277	0.6	0.5	78	7	1993.4-1998.6
S070	120.5619	23.4519	16.1	282	0.4	0.4	82	9	1993.4-1998.6
S071	120.3219	23.4694	4.9	276	0.4	0.4	79	7	1993.4-1998.6
S072	121.1625	22.9256	63.7	305	0.5	0.4	79	7	1993.4-1999.4
S073	121.2881	23.2397	55.6	307	0.4	0.4	88	8	1993.4-1999.4

S074	121.4953	23.7158	34.5	322	0.4	0.3	77	8	1993.4-1999.4
S075	121.5283	23.8275	26.5	313	0.5	0.4	70	6	1993.4-1999.4
S077	121.5250	23.5964	62.0	317	0.5	0.4	71	7	1993.4-1999.4
S078	121.0453	23.1669	31.0	287	0.6	0.5	81	5	1993.4-1999.4
S079	121.0269	23.2011	29.1	281	0.9	0.8	69	5	1993.4-1998.3
S080	121.0131	23.2203	31.3	286	0.5	0.5	82	9	1993.4-1998.3
S082	120.3686	23.2353	11.3	275	1.4	1.1	61	6	1993.4-1998.5
S083	120.3892	23.2367	15.8	264	1.5	1.3	67	6	1993.4-1998.5
S085	120.4156	23.2356	15.6	259	1.1	0.9	72	6	1993.4-1998.5
S087	120.4486	23.2358	15.6	274	1.1	1.0	96	6	1993.4-1998.5
S088	120.4592	23.2403	20.2	279	1.0	0.9	85	6	1993.4-1998.5
S089	120.4675	23.2211	20.0	275	0.9	0.9	84	6	1993.4-1998.5
S090	120.4806	23.2094	24.5	269	0.9	0.9	87	6	1993.4-1998.5
S091	120.4942	23.2047	30.0	277	1.2	1.1	121	6	1993.4-1998.5
S092	120.5286	23.1850	29.9	279	0.4	0.3	107	11	1993.4-1999.6
S093	121.6267	24.0147	14.6	311	0.4	0.3	86	8	1993.4-1999.6
S094	120.5014	23.6606	5.4	307	0.4	0.3	80	11	1993.4-1998.6
S095	121.6511	25.2292	4.5	154	1.3	1.2	123	4	1996.3-1998.9
S096	120.3383	22.7703	45.6	258	1.7	1.6	119	5	1996.1-1999.6
S097	120.3864	22.7756	45.7	252	1.2	1.1	99	5	1996.1-1999.0
S098	121.4344	23.6242	44.9	305	1.1	1.1	94	4	1996.5-1999.4
S099	121.4914	23.6339	47.7	313	0.9	0.9	67	4	1996.5-1999.4
S100	121.5008	23.5808	58.2	316	2.5	2.2	99	3	1997.1-1999.4
S101	121.6139	25.0406	6.1	164	0.1	0.1	72	24	1993.2-1999.6
S103	120.4753	23.5644	7.7	290	0.2	0.1	93	23	1993.4-1999.4
S104	121.1894	22.8208	62.3	309	0.2	0.1	95	24	1993.4-1999.6
S105	121.1128	22.9517	33.2	292	0.2	0.2	90	21	1993.4-1999.6
S122	121.4028	23.5783	37.4	301	1.2	1.1	92	4	1996.5-1999.4
S124	121.5353	24.4981	10.1	69	0.9	0.8	112	4	1996.5-1999.6
S125	120.7525	22.4058	48.0	273	2.3	2.1	96	3	1997.1-1999.4
S130	120.7433	22.7444	51.0	275	1.7	1.6	96	5	1997.1-1999.4
S23R	120.6061	22.6450	51.3	270	0.1	0.1	103	28	1993.2-1999.6
S291	120.3125	23.3383	8.9	257	1.2	1.1	93	6	1995.3-1998.6
S411	121.4008	25.1172	1.6	200	0.4	0.4	87	8	1993.2-1998.9
S412	121.4575	25.0775	1.7	166	0.4	0.4	65	8	1993.2-1998.9
S413	121.5797	24.9719	3.1	119	0.3	0.3	74	12	1993.2-1999.6
SANT	121.4164	23.1250	66.5	311	0.4	0.4	90	8	1993.4-1999.4

STCS	120.4808	23.5358	10.8	278	0.5	0.5	72	7	1993.4-1998.6
TAIW	121.5367	25.0214	2.7	86	0.1	0.1	72	20	1993.2-1998.9
TAPN	121.6356	25.0231	5.9	110	0.3	0.3	84	14	1993.2-1999.6
TECS	120.6550	24.3564	5.0	284	0.4	0.3	87	8	1994.9-1999.6
TFLS	121.0500	24.6806	4.5	324	0.3	0.3	80	10	1993.5-1999.6
TMLM	121.0075	22.6161	32.2	285	0.2	0.2	102	19	1995.2-1999.6
WK5A	121.4458	25.0692	0.6	86	2.4	2.0	84	4	1994.3-1998.9
WNTS	120.5844	24.1381	4.8	276	0.3	0.2	82	9	1993.5-1999.6
YMSM	121.5742	25.1658	2.3	118	0.2	0.2	81	22	1994.1-1999.6
Sites to the	east of the L	LVF							
0135	121.3486	23.2908	55.8	317	0.5	0.4	78	8	1993.4-1999.4
0207	121.1475	22.8178	58.6	303	0.6	0.6	70	6	1993.4-1998.3
0241	121.3347	23.3361	52.0	310	0.9	0.9	45	6	1994.2-1999.4
0242	121.3250	23.2961	58.3	317	1.4	1.3	45	5	1995.2-1999.4
0283	121.2336	23.1178	64.1	311	0.6	0.6	75	6	1993.4-1998.3
1215	121.5869	23.8878	28.0	316	0.4	0.4	70	8	1993.4-1999.4
8152	121.4872	23.6453	48.3	316	1.5	1.2	82	5	1996.1-1999.4
S033	121.2800	23.1031	63.5	312	0.5	0.4	84	7	1993.4-1999.4
S054	121.1975	22.7939	63.6	307	0.5	0.4	95	7	1993.4-1999.4
S056	121.1986	23.0369	62.5	306	0.5	0.4	83	7	1993.4-1999.4
S057	121.3092	22.9731	65.8	309	0.4	0.4	90	7	1993.4-1999.4
S058	121.4544	23.3194	64.6	316	0.2	0.2	91	21	1993.4-1999.4
S059	121.5133	23.4883	66.3	315	0.5	0.5	79	7	1993.4-1999.4
S061	121.5589	23.7511	33.6	325	0.4	0.4	78	7	1993.4-1999.4
S063	121.4786	22.6647	79.6	305	0.4	0.4	97	8	1993.4-1999.4
S072	121.1625	22.9256	63.7	305	0.5	0.4	79	7	1993.4-1999.4
S073	121.2881	23.2397	55.6	307	0.4	0.4	88	8	1993.4-1999.4
S074	121.4953	23.7158	34.5	322	0.4	0.3	77	8	1993.4-1999.4
S075	121.5283	23.8275	26.5	313	0.5	0.4	70	6	1993.4-1999.4
S077	121.5250	23.5964	62.0	317	0.5	0.4	71	7	1993.4-1999.4
S098	121.4344	23.6242	44.9	305	1.1	1.1	94	4	1996.5-1999.4
S099	121.4914	23.6339	47.7	313	0.9	0.9	67	4	1996.5-1999.4
S100	121.5008	23.5808	58.2	316	2.5	2.2	99	3	1997.1-1999.4
S102	121.5581	22.0372	81.5	302	0.3	0.2	105	14	1993.2-1996.5
S104	121.1894	22.8208	62.3	309	0.2	0.1	95	24	1993.4-1999.6
SANT	121.4164	23.1250	66.5	311	0.4	0.4	90	8	1993.4-1999.4

V is the station velocity; *Azi* is the azimuth of *V*; *a*, *b* are the semi-major and semi-minor axes for error

622 ellipse of *V*; Azi_a is the azimuth of *a*; *n* is number of survey.

623

A CERTING